Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.115
Filtrar
1.
Malar J ; 23(1): 103, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609987

RESUMO

BACKGROUND: The emergence of resistance to artemisinin-based combination therapy necessitates the search for new, more potent antiplasmodial compounds, including herbal remedies. The whole extract of Maytenus senegalensis has been scientifically investigated for potential biological activities both in vitro and in vivo, demonstrating strong antimalarial activity. However, there is a lack of data on the electrocardiographic effects of M. senegalensis in humans, which is a crucial aspect in the investigation of malaria treatment. Assessing the electrocardiographic effects of M. senegalensis is essential, as many anti-malarial drugs can inadvertently prolong the QT interval on electrocardiograms. Therefore, the study's objective was to evaluate the electrocardiographic effects of M. senegalensis in healthy adult volunteers. METHODS: This study is a secondary analysis of an open-label single-arm dose escalation. Twelve healthy eligible Tanzanian males, aged 18 to 45, were enrolled in four study dose groups. A single 12-lead electrocardiogram (ECG) was performed at baseline and on days 3, 7, 14, 28, and 56. RESULTS: No QTcF adverse events occurred with any drug dose. Only one volunteer who received the highest dose (800 mg) of M. senegalensis experienced a moderate transient change (△QTcF > 30 ms; specifically, the value was 37 ms) from baseline on day 28. There was no difference in maximum QTcF and maximum △QTcF between volunteers in all four study dose groups. CONCLUSIONS: A four-day regimen of 800 mg every 8 h of M. senegalensis did not impact the electrocardiographic parameters in healthy volunteers. This study suggests that M. senegalensis could be a valuable addition to malaria treatment, providing a safer alternative and potentially aiding in the battle against artemisinin-resistant malaria. The results of this study support both the traditional use and the modern therapeutic potential of M. senegalensis. They also set the stage for future research involving larger and more diverse populations to explore the safety profile of M. senegalensis in different demographic groups. This is especially important considering the potential use of M. senegalensis as a therapeutic agent and its widespread utilization as traditional medicine. Trial registration ClinicalTrials.gov, NCT04944966. Registered 30 June 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04944966?term=kamaka&draw=2&rank=1.


Assuntos
Antimaláricos , Artemisininas , Malária , Maytenus , Adulto , Masculino , Humanos , Antimaláricos/farmacologia , Voluntários Saudáveis , Tanzânia , Voluntários , Eletrocardiografia , Malária/tratamento farmacológico
2.
Malar J ; 23(1): 92, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570791

RESUMO

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Prevalência , Togo/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Biomarcadores , Combinação de Medicamentos , Plasmodium falciparum/genética
3.
Parasitol Res ; 123(4): 180, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592544

RESUMO

Because of recent reports of praziquantel resistance in schistosome infections, there have been suggestions to employ ivermectin as a possible alternative, especially as its chemical composition is different from that of praziquantel, so cross-resistance is not expected. In order to ascertain possible damage and elimination of worms, we used ivermectin by oral gavage in infected mice, at a high dose (30.1 mg/kg, bordering toxicity). We also tested the efficacy of the drug at various times postinfection (PI), to check on possible effect on young and mature stages of the parasites. Thus, we treated mice on days 21 and 22 or on days 41 and 42 and even on days 21, 22, 41, and 42 PI. None of the treatment regimens resulted in cure rates or signs of lessened pathology in the mice. We also compared the effect of ivermectin to that of artemisone, an artemisinin derivative which had served us in the past as an effective anti-schistosome drug, and there was a stark difference in the artemisone's efficacy compared to that of ivermectin; while ivermectin was not effective, artemisone eliminated most of the worms, prevented egg production and granulomatous inflammatory response. We assume that the reported lack of activity of ivermectin, in comparison with praziquantel and artemisinins, originates from the difference in their mode of action. In wake of our results, we suggest that ivermectin is not a suitable drug for treatment of schistosomiasis.


Assuntos
Artemisininas , Schistosomatidae , Esquistossomose , Animais , Camundongos , Praziquantel/uso terapêutico , Ivermectina/uso terapêutico , Esquistossomose/tratamento farmacológico
4.
Malar J ; 23(1): 101, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594679

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a major contributor to the substantial reductions in global malaria morbidity and mortality over the last decade. In Tanzania, artemether-lumefantrine (AL) was introduced as the first-line treatment for uncomplicated Plasmodium falciparum malaria in 2006. The World Health Organization (WHO) recommends regular assessment and monitoring of the efficacy of the first-line treatment, specifically considering that artemisinin resistance has been confirmed in the Greater Mekong sub-region. This study's main aim was to assess the efficacy and safety of AL for treating uncomplicated P. falciparum malaria in Tanzania. METHODS: This was a single-arm prospective antimalarial drug efficacy trial conducted in four of the eight National Malaria Control Programme (NMCP) sentinel sites in 2019. The trial was carried out in outpatient health facilities in Karume-Mwanza region, Ipinda-Mbeya region, Simbo-Tabora region, and Nagaga-Mtwara region. Children aged six months to 10 years with microscopy confirmed uncomplicated P. falciparum malaria who met the inclusion criteria were recruited based on the WHO protocol. The children received AL (a 6-dose regimen of AL twice daily for three days). Clinical and parasitological parameters were monitored during follow-up over 28 days to evaluate drug efficacy. RESULTS: A total of 628 children were screened for uncomplicated malaria, and 349 (55.6%) were enrolled between May and September 2019. Of the enrolled children, 343 (98.3%) completed the 28-day follow-up or attained the treatment outcomes. There were no early treatment failures; recurrent infections during follow-up were common at two sites (Karume 29.5%; Simbo 18.2%). PCR-corrected adequate clinical and parasitological response (ACPR) by survival analysis to AL on day 28 of follow-up varied from 97.7% at Karume to 100% at Ipinda and Nagaga sites. The commonly reported adverse events were cough, skin pallor, and abdominal pain. The drug was well tolerated, and no serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria in Tanzania in 2019. The high recurrent infections were mainly due to new infections, highlighting the potential role of introducing alternative artemisinin-based combinations that offer improved post-treatment prophylaxis, such as artesunate-amodiaquine (ASAQ).


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Antimaláricos/efeitos adversos , Combinação Arteméter e Lumefantrina/efeitos adversos , Tanzânia , Reinfecção/induzido quimicamente , Reinfecção/tratamento farmacológico , Estudos Prospectivos , Combinação de Medicamentos , Artemeter/uso terapêutico , Malária Falciparum/tratamento farmacológico , Artemisininas/efeitos adversos , Amodiaquina/uso terapêutico , Malária/tratamento farmacológico , Resultado do Tratamento , Plasmodium falciparum
5.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1570-1578, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621941

RESUMO

This study aims to clarify the effects of dihydroartemisinin(DHA) combined with pregabalin(PGB) on neuropathic pain(NP) in mice and explore the neuroinflammatory regulatory mechanism. NP mice model was established using spinal nerve ligation, whereas the sham group exposed the spinal nerve without ligation. The mice were randomly divided into sham group, model group, PGB groups of low, medium, and high doses(PGB-L, PGB-M, and PGB-H, with 22, 45, and 91 mg·kg~(-1)), DHA group(16 mg·kg~(-1)), and DHA combined with PGB groups of low, medium, and high doses(DHA + PGB-L, DHA + PGB-M, and DHA + PGB-H). Administration by gavage 18 days after modeling. Von Frey and cold plate were used to detect mechanical pain threshold and cold pain sensitivity in mice. The tail suspension test and forced swimming test were used to investigate depressive behavior, and the open field test was used to estimate anxiety behavior. The Morris water maze was used to evaluate cognitive function. Liquid suspension chip technology was used to quantitatively analyze immune inflammation-related factors. Immunofluorescence was used to detect the expression of CC chemokine ligand 3(CCL3) and transmembrane protein 119(TMEM119). The results showed that compared with the sham group, the mechanical pain and cold pain sensitivity thresholds of the model group were significantly reduced, and the struggle time was significantly increased in the tail suspension test and forced swimming test. The activity time in the central area was significantly reduced in the open field test. The residence time in the second/fourth quadrant was significantly longer than that in other quadrants, and the latency time of platform climbing significantly increased after platform withdrawal in the Morris water maze experiment. The expression of CCL3 was significantly increased; the number of TMEM119 positive cells and the cell body area were significantly increased. Compared with the model group, the DHA + PGB-M group showed a significant increase in mechanical pain and cold pain sensitivity thresholds, as well as a significant increase in struggle time in the tail suspension test and forced swimming test. The activity time in the central area of the open field test was significantly reduced. The residence time in the second/fourth quadrant was significantly shorter than that in other quadrants, and the latency time of platform climbing after platform withdrawal was significantly reduced. Compared with the PGB-M group, the mechanical pain threshold of D14-17 in the DHA + PGB-M group was significantly increased, and the struggle time during forced swimming was significantly increased. The residence time in the second/fourth quadrant of the Morris water maze was significantly shorter than that in other quadrants. Compared with the model group, the expression of CCL3, the number of TMEM119 positive cells, and the cell body area in the DHA + PGB-M group were significantly decreased. This study indicates that DHA + PGB can enhance the analgesic effect of PGB on NP mice, break through the limitations of PGB tolerance, and make up for the shortcomings of PGB in antidepressant and cognitive improvement. Its mechanism may be related to regulating neuroinflammation by inhibiting the activation of microglial cells and expression of CCL3.


Assuntos
Artemisininas , Neuralgia , Camundongos , Animais , Pregabalina , Ácido gama-Aminobutírico , Neuralgia/tratamento farmacológico , Neuralgia/genética , Neuralgia/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621973

RESUMO

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Assuntos
Artemisia annua , Artemisininas , Lactonas , Artemisia annua/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Melhoramento Vegetal , Artemisininas/análise , Aldeídos
7.
Malar J ; 23(1): 95, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582830

RESUMO

BACKGROUND: The use of artemisinin-based combination therapy (ACT) is recommended by the World Health Organization for the treatment of uncomplicated falciparum malaria. Artemether-lumefantrine (AL) is the most widely adopted first-line ACT for uncomplicated malaria in sub-Saharan Africa (SSA), including mainland Tanzania, where it was introduced in December 2006. The WHO recommends regular assessment to monitor the efficacy of the first-line treatment specifically considering that artemisinin partial resistance was reported in Greater Mekong sub-region and has been confirmed in East Africa (Rwanda and Uganda). The main aim of this study was to assess the efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in mainland Tanzania. METHODS: A single-arm prospective anti-malarial drug efficacy trial was conducted in Kibaha, Mlimba, Mkuzi, and Ujiji (in Pwani, Morogoro, Tanga, and Kigoma regions, respectively) in 2018. The sample size of 88 patients per site was determined based on WHO 2009 standard protocol. Participants were febrile patients (documented axillary temperature ≥ 37.5 °C and/or history of fever during the past 24 h) aged 6 months to 10 years. Patients received a 6-dose AL regimen by weight twice a day for 3 days. Clinical and parasitological parameters were monitored during 28 days of follow-up to evaluate the drug efficacy and safety. RESULTS: A total of 653 children were screened for uncomplicated malaria and 349 (53.7%) were enrolled between April and August 2018. Of the enrolled children, 345 (98.9%) completed the 28 days of follow-up or attained the treatment outcomes. There were no early treatment failures, but recurrent infections were higher in Mkuzi (35.2%) and Ujiji (23%). By Kaplan-Meier analysis of polymerase chain reaction (PCR) uncorrected adequate clinical and parasitological response (ACPR) ranged from 63.4% in Mkuzi to 85.9% in Mlimba, while PCR-corrected ACPR on day 28 varied from 97.6% in Ujiji to 100% in Mlimba. The drug was well tolerated; the commonly reported adverse events were cough, runny nose, and abdominal pain. No serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria. The high number of recurrent infections were mainly due to new infections, indicating the necessity of utilizing alternative artemisinin-based combinations, such as artesunate amodiaquine, which provide a significantly longer post-treatment prophylactic effect.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Criança , Humanos , Antimaláricos/efeitos adversos , Combinação Arteméter e Lumefantrina/efeitos adversos , Tanzânia , Reinfecção/induzido quimicamente , Reinfecção/tratamento farmacológico , Artemisininas/efeitos adversos , Artemeter/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Amodiaquina/uso terapêutico , Malária/tratamento farmacológico , Febre/tratamento farmacológico , Combinação de Medicamentos , Etanolaminas/efeitos adversos , Plasmodium falciparum
8.
Malar J ; 23(1): 89, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539181

RESUMO

A Stakeholder engagement meeting on the implementation of post-discharge malaria chemoprevention (PDMC) in Benin, Kenya, Malawi, and Uganda was held in Nairobi, Kenya, on 27 September 2023. Representatives from the respective National Malaria Control Programmes, the World Health Organization (WHO) Geneva, Africa Regional and Kenya offices, research partners, non-governmental organizations, and the Medicines for Malaria Venture participated. PDMC was recommended by the WHO in June 2022 and involves provision of a full anti-malarial treatment course at regular intervals during the post-discharge period in children hospitalized with severe anaemia in areas of moderate-to-high malaria transmission. The WHO recommendation followed evidence from a meta-analysis of three clinical trials and from acceptability, delivery, cost-effectiveness, and modelling studies. The trials were conducted in The Gambia using monthly sulfadoxine-pyrimethamine during the transmission season, in Malawi using monthly artemether-lumefantrine, and in Kenya and Uganda using monthly dihydroartemisinin-piperaquine, showing a significant reduction in all-cause mortality by 77% (95% CI 30-98) and a 55% (95% CI 44-64) reduction in all-cause hospital readmissions 6 months post-discharge. The recommendation has not yet been implemented in sub-Saharan Africa. There is no established platform for PDMC delivery. The objectives of the meeting were for the participating countries to share country contexts, plans and experiences regarding the adoption and implementation of PDMC and to explore potential delivery platforms in each setting. The meeting served as the beginning of stakeholder engagement within the PDMC Saves Lives project and will be followed by formative and implementation research to evaluate alternative delivery strategies in selected countries. Meeting highlights included country consensus on use of dihydroartemisinin-piperaquine for PDMC and expansion of the target group to "severe anaemia or severe malaria", in addition to identifying country-specific options for PDMC delivery for evaluation in implementation research. Further exploration is needed on whether the age group should be extended to school-age children.


Assuntos
Anemia , Antimaláricos , Artemisininas , Malária , Criança , Humanos , Antimaláricos/uso terapêutico , Quênia , Uganda , Assistência ao Convalescente , Malaui , Benin , Alta do Paciente , Participação dos Interessados , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/prevenção & controle , Malária/tratamento farmacológico , Pirimetamina/uso terapêutico , Combinação de Medicamentos , Quimioprevenção , Anemia/tratamento farmacológico
9.
Cell Biol Int ; 48(5): 726-736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439187

RESUMO

Cellular senescence is an irreversible cell-cycle arrest in response to a variety of cellular stresses, which contribute to the pathogenesis of a variety of age-related degenerative diseases. However, effective antisenescence strategies are still lacking. Drugs that selectively target senescent cells represent an intriguing therapeutic strategy to delay aging and age-related diseases. Thus, we thought to investigate the effects of dihydroartemisinin (DHA) on senescent cells and elucidated its mechanisms underlying aging. Stress-induced premature senescence (SIPS) model was built in NIH3T3 cells using H2O2 and evaluated by ß-galactosidase staining. Cells were exposed to DHA and subjected to cellular activity assays including viability, ferroptosis, and autophagy. The number of microtubule-associated protein light-chain 3 puncta was detected by immunofluorescence staining. The iron content was assessed by spectrophotometer and intracellular reactive oxygen species (ROS) was measured by fluorescent probe dichlorodihydrofluorescein diacetate. We found that DHA triggered senescent cell death via ferroptosis. DHA accelerated ferritin degradation via promoting autophagy, increasing the iron contents, promoting ROS accumulation, thus leading to ferroptotic cell death in SIPS cells. In addition, autophagy inhibitor BafA1 preconditioning inhibited ferroptosis induced by DHA. Moreover, Atg5 silencing and autophagy inhibitor BafA1 preconditioning inhibited ferroptosis induced by DHA. We also revealed that the expression of p-AMP-activated protein kinase (AMPK) and p-mammalian target of rapamycin (mTOR) in senescent cells was downregulated. These results suggested that DHA may be a promising drug candidate for clearing senescent cells by inducing autophagy-dependent ferroptosis via AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Artemisininas , Ferroptose , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células NIH 3T3 , Peróxido de Hidrogênio/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Senescência Celular , Ferro , Mamíferos/metabolismo
10.
Malar J ; 23(1): 90, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553737

RESUMO

BACKGROUND: Diversification of artemisinin-based combination therapy (ACT) is suggested as one of the strategies that can be used to contain artemisinin resistance. Artesunate-amodiaquine (ASAQ) is one of the artemisinin-based combinations that can be used in the diversification strategy as an alternative first-line treatment for uncomplicated malaria in mainland Tanzania. There is however limited data on the efficacy of ASAQ in mainland Tanzania. This study assessed the efficacy of ASAQ for treatment of uncomplicated Plasmodium falciparum malaria in selected sentinel sites for therapeutic efficacy studies in mainland Tanzania. METHODS: Between December 2018 and March 2020, children aged between 6 months and 10 years, attending at Nagaga, Mkuzi, and Mlimba primary health facilities, and with suspected uncomplicated malaria infection were screened for eligibility to participate in the study. Malaria infection was screened using microscopy. Children with uncomplicated P. falciparum monoinfection and who fulfilled all other inclusion criteria, and had none of the exclusion criteria, according to the World Health Organization (WHO) guidelines, were treated with ASAQ. Follow-up visits were scheduled on days 0, 1, 2, 3, 7, 14, 21, and 28 or on any day of recurrent infection for clinical and laboratory assessment. Polymerase chain reaction (PCR)-corrected cure rate on day 28 was the primary outcome. RESULTS: A total of 264 children, 88 in each of the three study sites (Mlimba, Mkuzi and Nagaga health facilities) were enrolled and treated with ASAQ. The ASAQ PCR-corrected cure rate was 100% at all the three study sites. None of the participants had early treatment failure or late clinical failure. Furthermore, none of the participants had a serious adverse event. CONCLUSION: ASAQ was highly efficacious for the treatment of uncomplicated P. falciparum malaria in mainland Tanzania, therefore, it can be deployed as an alternative first-line treatment for uncomplicated malaria as part of diversification strategy to contain the spread of partial artemisinin resistance in the country.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Criança , Humanos , Lactente , Amodiaquina , Artesunato/uso terapêutico , Tanzânia , Plasmodium falciparum , Combinação de Medicamentos , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico
11.
Am J Trop Med Hyg ; 110(4): 677-680, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38460198

RESUMO

Unlike praziquantel, artemisinin derivatives are effective against juvenile schistosome worms. We assessed the efficacy and safety of a single oral dose of artesunate plus sulfalene-pyrimethamine versus praziquantel in the treatment of Schistosoma mansoni. Seventy-three schoolchildren (aged 9-15 years) with confirmed S. mansoni infection in Rarieda, western Kenya, were randomly assigned to receive either a single oral dose of artesunate plus sulfalene-pyrimethamine (n = 39) or a single dose of praziquantel (n = 34). The cure and egg reduction rates at 4 weeks posttreatment were 69.4% (25/36) versus 80.6% (25/31) (P = 0.297) and 99.1% versus 97.5% (P = 0.607) in the artesunate plus sulfalene-pyrimethamine group versus praziquantel group, respectively. Fourteen children developed adverse events, and there were no serious adverse events. A single oral dose of artesunate plus sulfalene-pyrimethamine has efficacy comparable to that of praziquantel in the treatment of S. mansoni, but these results should be confirmed in larger randomized controlled trials.


Assuntos
Anti-Helmínticos , Artemisininas , Esquistossomose mansoni , Sulfaleno , Criança , Animais , Humanos , Praziquantel/efeitos adversos , Artesunato/uso terapêutico , Schistosoma mansoni , Quênia , Sulfaleno/farmacologia , Sulfaleno/uso terapêutico , Pirimetamina/uso terapêutico , Artemisininas/efeitos adversos , Quimioterapia Combinada , Esquistossomose mansoni/tratamento farmacológico , Resultado do Tratamento , Anti-Helmínticos/uso terapêutico
12.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38436248

RESUMO

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Assuntos
Artemisininas , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , 60547 , Alumínio , Neoplasias/tratamento farmacológico , Ferro , Hidróxidos , Imunoterapia/métodos , Microambiente Tumoral
13.
Lancet Glob Health ; 12(4): e631-e640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485430

RESUMO

BACKGROUND: The geographical, demographic, and socioeconomic distributions of malaria and malnutrition largely overlap. It remains unknown whether malnutrition affects the efficacy of WHO-recommended artemisinin-based combination therapies (ACTs). A previous systematic review was inconclusive as data were sparse and heterogeneous, indicating that other methodological approaches, such as individual patient data meta-analysis, should be considered. The objective of this study was to conduct such a meta-analysis to assess the effect of malnutrition (wasting and stunting) on treatment outcomes in children younger than 5 years treated with an ACT for uncomplicated falciparum malaria. METHODS: We conducted a meta-analysis of individual patient data from studies identified through a systematic review of literature published between 1980 and 2018 in PubMed, Global Health, and Cochrane Libraries (PROSPERO CRD42017056934) and inspection of the WorldWide Antimalarial Resistance Network (WWARN) repository for ACT efficacy studies, including children younger than 5 years with uncomplicated falciparum malaria. The association of either acute (wasting) or chronic (stunting) malnutrition with day 42 PCR-adjusted risk of recrudescence (ie, return of the same infection) or reinfection after therapy was investigated using Cox regression, and with day 2 parasite positivity using logistic regression. FINDINGS: Data were included from all 36 studies targeted, 31 from Africa. Of 11 301 eligible children in 75 study sites, 11·5% were wasted (weight-for-height Z score [WHZ] <-2), and 31·8% were stunted (height-for-age Z score [HAZ] <-2). Decrease in WHZ was associated with increased risk of day 2 positivity (adjusted odds ratio 1·12, 95% CI 1·05-1·18 per unit; p=0·0002), treatment failure (adjusted hazard ratio [AHR] 1·14, 95% CI 1·02-1·26, p=0·016), and reinfection after therapy (AHR 1·09, 1·04-1·13, p=0·0003). Children with milder wasting (WHZ -2 to -1) also had a higher risk of recrudescence (AHR 1·85, 1·29-2·65, p=0·0008 vs WHZ ≥0). Stunting was not associated with reduced ACT efficacy. INTERPRETATION: Children younger than 5 years with acute malnutrition and presenting with uncomplicated falciparum malaria were at higher risk of delayed parasite clearance, ACT treatment failure, and reinfections. Stunting was more prevalent, but not associated with changes in ACT efficacy. Acute malnutrition is known to impact medicine absorption and metabolism. Further study to inform dose optimisation of ACTs in wasted children is urgently needed. FUNDING: Bill & Melinda Gates Foundation. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Desnutrição , Criança , Humanos , Pré-Escolar , Reinfecção , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária/tratamento farmacológico , Falha de Tratamento , Desnutrição/epidemiologia , Recidiva , Transtornos do Crescimento
14.
Int Immunopharmacol ; 130: 111795, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447418

RESUMO

Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.


Assuntos
Artemisininas , Artrite Experimental , Artrite Reumatoide , Osteólise , Ratos , Animais , Linfócitos T Reguladores , Proteoma , Proteômica , Articulações/patologia , Osteólise/metabolismo
15.
PeerJ ; 12: e17084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529311

RESUMO

Background: Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method: Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results: Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion: Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária/diagnóstico , Extratos Vegetais/uso terapêutico
16.
PLoS One ; 19(3): e0295198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536824

RESUMO

BACKGROUND: Malaria remains one of the leading causes of morbidity, and mortality in Uganda. A large proportion of malaria symptomatic patients seek healthcare in private sector. However, availability and affordability are major barriers to access to effective treatment. The private sector copayment mechanism in Uganda aims to increase availability and affordability of antimalarial agents. Our study assessed availability, price, and market share of quality assured artemisinin-based combination therapies (QAACTs) in private drug outlets in selected districts during the implementation of copayment mechanism. METHODS: This was a cross-sectional survey of anti-malarial agents in private drug outlets in in selected moderate-to-high (Tororo, and Apac districts) and low (Kabale and Mbarara districts) malaria transmission settings. Following the World Health Organization/Health Action International (WHO/HAI) criteria, an audit of the antimalarial agents was done using a checklist to determine availability, price, and market share of QAACTs. Data were entered in Epi-data and analyzed in STATA ver 14.0 at 95% confidence level. RESULTS: A total of twenty-eight (28) private drug outlets (pharmacies and drug shops) were included in the survey. One in seven (20/144: 95%CI: 9.1, 20.6) of the antimalarial agents in private drug outlets were quality assured artemisinin-based combination therapies (QAACT). Artemether-lumefantrine (AL), 8.9% (11/124) and Artesunate-Amodiaquine (AQ), 7.3% (9/124) were the only QAACTs present in the drug outlets at the time of the survey. The majority, 86.1%% (124/144) of antimalarial agents present in stock in the drug outlets were artemisinin based. The most common, 38.9% (56/144) ACT in the drug outlets was Dihydroartemisinin-Piperaquine (DHP). Most, 69.4% (100/144) of the antimalarial agents were in high malaria transmission settings. The cost of ACT antimalarial agents is high in the country, USD 1.4 (Artemether-Lumefantrine, AL), USD 2.4 (Dihydroartemisinin-Piperaquine, DP), the first line and second-line agents respectively for treatment of uncomplicated malaria in Uganda. There was a statistically significant difference between the dispensing price of 'Green leaf' ACTs (QAACT) and the recommended price (p<0.001). Predictors of availability of QAACT in private drug outlets include pharmacy drug outlet (aPR:0.4; 95%CI: 0.2, 0.9) and dispensing price more than 3000UGX (USD 0.83) (aPR: 0.4, 95%CI: 0.1, 0.51). CONCLUSION: Quality assured artemisinin-based combination therapies (QAACTs) are not common in private drug outlets in selected districts in Uganda. All the drug outlets had at least one ACT antimalarial agent present on the day of the survey. The dispensing price of QAACTs was significantly higher than the recommended markup price. There is need for awareness creation, surveillance, and monitoring of the implementation of Copayment mechanism in the country.


Assuntos
Antimaláricos , Artemisininas , Malária , Humanos , Antimaláricos/uso terapêutico , Uganda , Estudos Transversais , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemeter/uso terapêutico , Artemisininas/uso terapêutico , Malária/tratamento farmacológico
18.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
19.
Mol Med ; 30(1): 35, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454322

RESUMO

BACKGROUND: Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS: STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS: Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION: Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.


Assuntos
Artemisininas , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Ferroptose , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Hipocampo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Neurônios
20.
Malar J ; 23(1): 64, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429807

RESUMO

Malaria remains a global health challenge, disproportionately affecting vulnerable communities. Despite substantial progress, the emergence of anti-malarial drug resistance poses a constant threat. The Greater Mekong Subregion (GMS), which includes Cambodia, China's Yunnan province, Lao People's Democratic Republic, Myanmar, Thailand, and Viet Nam has been the epicentre for the emergence of resistance to successive generations of anti-malarial therapies. From the perspective of the World Health Organization (WHO), this article considers the collaborative efforts in the GMS, to contain Plasmodium falciparum artemisinin partial resistance and multi-drug resistance and to advance malaria elimination. The emergence of artemisinin partial resistance in the GMS necessitated urgent action and regional collaboration resulting in the Strategy for Malaria Elimination in the Greater Mekong Subregion (2015-2030), advocating for accelerated malaria elimination interventions tailored to country needs, co-ordinated and supported by the WHO Mekong malaria elimination programme. The strategy has delivered substantial reductions in malaria across all GMS countries, with a 77% reduction in malaria cases and a 97% reduction in malaria deaths across the GMS between 2012 and 2022. Notably, China was certified malaria-free by WHO in 2021. Countries' ownership and accountability have been pivotal, with each GMS country outlining its priorities in strategic and annual work plans. The development of strong networks for anti-malarial drug resistance surveillance and epidemiological surveillance was essential. Harmonization of policies and guidelines enhanced collaboration, ensuring that activities were driven by evidence. Challenges persist, particularly in Myanmar, where security concerns have limited recent progress, though an intensification and acceleration plan aims to regain momentum. Barriers to implementation can slow progress and continuing innovation is needed. Accessing mobile and migrant populations is key to addressing remaining transmission foci, requiring effective cross-border collaboration. In conclusion, the GMS has made significant progress towards malaria elimination, particularly in the east where several countries are close to P. falciparum elimination. New and persisting challenges require sustained efforts and continued close collaboration. The GMS countries have repeatedly risen to every obstacle presented, and now is the time to re-double efforts and achieve the 2030 goal of malaria elimination for the region.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Organização Mundial da Saúde , Sudeste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...